HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells

Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13432-7. doi: 10.1073/pnas.0704212104. Epub 2007 Jul 25.

Abstract

HIV protease inhibitors (HIV-PIs) target the HIV aspartyl protease, which cleaves the HIV gag-pol polyprotein into shorter proteins required for the production of new virions. HIV-PIs are a cornerstone of treatment for HIV but have been associated with lipodystrophy and other side effects. In both human and mouse fibroblasts, we show that HIV-PIs caused an accumulation of prelamin A. The prelamin A in HIV-PI-treated fibroblasts migrated more rapidly than nonfarnesylated prelamin A, comigrating with the farnesylated form of prelamin A that accumulates in ZMPSTE24-deficient fibroblasts. The accumulation of farnesyl-prelamin A in response to HIV-PI treatment was exaggerated in fibroblasts heterozygous for Zmpste24 deficiency. HIV-PIs inhibited the endoproteolytic processing of a GFP-prelamin A fusion protein. The HIV-PIs did not affect the farnesylation of HDJ-2, nor did they inhibit protein farnesyltransferase in vitro. HIV-PIs also did not inhibit the activities of the isoprenyl-cysteine carboxyl methyltransferase ICMT or the prenylprotein endoprotease RCE1 in vitro, but they did inhibit ZMPSTE24 (IC(50): lopinavir, 18.4 +/- 4.6 microM; tipranavir, 1.2 +/- 0.4 microM). We conclude that the HIV-PIs inhibit ZMPSTE24, leading to an accumulation of farnesyl-prelamin A. The inhibition of ZMPSTE24 by HIV-PIs could play a role in the side effects of these drugs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • DNA Primers
  • HIV Protease Inhibitors / pharmacology*
  • Humans
  • Lamin Type A
  • Membrane Proteins / antagonists & inhibitors*
  • Metalloendopeptidases / antagonists & inhibitors*
  • Nuclear Proteins / metabolism*
  • Protein Precursors / metabolism*

Substances

  • DNA Primers
  • HIV Protease Inhibitors
  • Lamin Type A
  • Membrane Proteins
  • Nuclear Proteins
  • Protein Precursors
  • prelamin A
  • Metalloendopeptidases
  • ZMPSTE24 protein, human